New constraints on the upper mantle properties beneath —Cordillera Talamanca—

Study Area: Southern Costa Rica

- Costa Rica sits atop a subduction zone
 - Oceanic crust subducts below continental lithosphere

Subduction zones have 2 characteristics:

volcanic arc

earthquakes

Problem: Southern Costa Rica is complicated

- Lack of volcanoes and deep earthquakes that would be expected in a typical subduction zone configuration
- Seismic properties below the Talamancas are poorly understood

How to study these properties?

-earthquakes
(specifically, seismic refraction)

Seismic Refraction – An Overview

- Used to determine large scale crustal layering
 - Thickness
 - Velocity
- Single source of energy receivers Evenly-spaced receivers in a line Distance (m) energy source $V_1 = 1400 \text{ m/s}$ $V_2 = 4500 \text{ m/s}$ $V_2 > V_1$

Seismic Refraction – Principles

direct wave refracted wave

What assumptions are made?

Earth is one-dimensional (flat-layered)

speeds increase with depth

Seismic Refraction – Principles

Seismic Station Map

Source Regions

Earthquake Selection Criteria

- Outside of the borders of Costa Rica
- Magnitude of 5 or greater (4.5 or greater in the Caribbean region)
- Large range of source-receiver distances
- Shallow depth of hypocenter (<20 km)
- Good waveforms (first arrivals can be picked with limited filtering)

Decedenta avec de from munifiill deced

What I Did

Step 0:

Worked with Krista Thiele at ICE for 3 weeks and learned how to pick first arrivals of earthquakes in SEISAN

30

What I Did

Step 1:

First order primary measurements

- Picked over 1300 first arrivals of P-waves from the set of earthquakes
- Added weights to the picks for more accurate location

What I Did

Step 2:

Data processing and analysis (early stages)

Created maps of ray paths

Created graphs of travel time vs. distance

Example Travel Time Curve: PGY Event #9

high residuals

May 14, 2015 14:08:12 Mw 5.4

Ray Path Map + Azimuth Filtering

Filter for azimuth that targets the Talamancas

Combining Events from One Region

PGY Events / 2, 8, 9, and 12

- Take multiple events that are relatively close to one another
- Select all first
 arrivals that fall
 within the range of
 azimuths
- Construct travel time plot

Combining Events from One Region

PFZ Events 5, 9, 11, 12, and 14

Comparing Refraction Lines from Two Regions

PGY: 250-450 km slope = $1/v_2$ = 0.1258 $v_2 \approx 7.949$

PFZ: 15O-315 km slope = $1/v_2 = 0.1354$ $v_2 \approx 7.385$

Future Work

- 1. Resolve technical glitches
- 2. Determine possible mislocation and correct for it
- 3. Determine influence of depth of source

Future Work

These primary first-order measurements will be used to

- Constrain seismic properties of the lithosphere below the Cordillera Talamanca
- Improve RSN's current seismic velocity model
 - Earthquake analysis software requires a generalized
 1-dimensional velocity to accurately locate
 earthquakes
 - The origins of the current model used by the RSN are unknown

3.500	0.000	
5.000	1.000	
6.000	6.000	
6.800	13.000	В
8.000	35.000	N
8.260	200.000	
8.500	300.000	

Thank you!

Thank you!